Search results for " Phase diagram"
showing 10 items of 12 documents
Unconventional phases of attractive Fermi gases in synthetic Hall ribbons
2017
An innovative way to produce quantum Hall ribbons in a cold atomic system is to use M hyperfine states of atoms in a one-dimensional optical lattice to mimic an additional "synthetic dimension." A notable aspect here is that the SU(M) symmetric interaction between atoms manifests as "infinite ranged" along the synthetic dimension. We study the many-body physics of fermions with SU(M) symmetric attractive interactions in this system using a combination of analytical field theoretic and numerical density-matrix renormalization-group methods. We uncover the rich ground-state phase diagram of the system, including unconventional phases such as squished baryon fluids, shedding light on many-body…
Insights into the compositional evolution of crustal magmatic systems from coupled petrological-geodynamical models
2020
Funding was provided by the VAMOS Research Center, University of Mainz (Germany) and by the ERC Consolidator Grant MAGMA (project #771143). The evolution of crustal magmatic systems is incompletely understood, as most studies are limited either by their temporal or spatial resolution. Exposed plutonic rocks represent the final stage of a long-term evolution punctuated by several magmatic events with different chemistry and generated under different mechanical conditions. Although the final state can be easily described, the nature of each magmatic pulse is more difficult to retrieve. This study presents a new method to investigate the compositional evolution of plutonic systems while consid…
X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
2009
In this paper, we report angle-dispersive X-ray diffraction data of molybdenum melting, measured in a double-sided laser-heated diamond-anvil cell up to a pressure of 119 GPa and temperatures up to 3400 K. The new melting temperatures are in excellent agreement with earlier measurements up to 90 GPa that relied on optical observations of melting and in strong contrast to most theoretical estimates. The X-ray measurements show that the solid melts from the bcc structure throughout the reported pressure range and provide no evidence for a high temperature transition from bcc to a close-packed structure, or to any other crystalline structure. This observation contradicts earlier interpretation…
Synthesis and characterization of indium oxide at high pressures
2018
Introducción: La naturaleza es sorprendente pero a la vez limitada. A mi entender, nada tiene más potencial que aplicar el ingenio humano para modificar lo que nos rodea y crear algo completamente nuevo. La Física de la Materia Condensada es un campo que actualmente está ganando importancia en la Física moderna. En virtud de los éxitos logrados en Física de la Materia Condensada se han producido enormes avances en el campo de la electrónica cuántica, de los semiconductores y de la ciencia de materiales, teniendo como resultado numerosas aplicaciones tecnológicas que han cambiado nuestras vidas drásticamente en los últimos 50 años. Una de las ramas de la Física de la Materia Condensada es el…
On the strength of the U A (1) anomaly at the chiral phase transition in N f = 2 QCD
2016
We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the split…
The Ferroelectric Photo-Groundstate of SrTiO$_3$: Cavity Materials Engineering
2021
Significance Controlling collective phenomena in quantum materials is a promising route toward engineering material properties on demand. Strong THz lasers have been successful at inducing ferroelectricity in S r T i O 3 . Here we demonstrate, from atomistic calculations, that cavity quantum vacuum fluctuations induce a change in the collective phase of S r T i O 3 in the strong light–matter coupling regime. Under these conditions, the ferroelectric phase is stabilized as the ground state, instead of the quantum paraelectric one. We conceptualize this light–matter hybrid state as a material photo ground state: Fundamental properties such as crystal structure, phonon frequencies, and the col…
Magnetic order in the heavy fermion system Ce(Cu1−xNix)2Ge2
1990
Abstract The magnetic phase diagram of the heavy fermion (HF) systems Ce(Cu 1−x Ni x ) 2 Ge 2 is discussed utilizing results of transport, thermodynamic and neutron-scattering measurements. While the Kondo temperature increases monotonically with x, a complex x-dependence is found for the Neel temperature, associated with a transition from local-moment to itinerant HF magnetism.
Configurational entropy of microemulsions : The fundamental length scale
1993
Phenomenological models have been quite successful in characterizing both the various complex phases and the corresponding phase diagrams of microemulsions. In some approaches, e.g., the random mixing model (RMM), the lattice parameter is of the order of the dimension of an oil or water domain and has been used as a length scale for computing a configurational entropy, the so‐called entropy of mixing, of the microemulsion. In the central and material section of this paper (Sec. III), we show that the fundamental length scale for the calculation of the entropy of mixing is of the order of the cube root of the volume per molecule—orders of magnitude smaller than the dimension of such a domain…
Measurement of cloud point temperature in polymer solutions
2013
Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: characterization of a key organotin oxide intermediate
2006
The direct synthesis of dimethyl carbonate (DMC) using carbon dioxide as solvent and reagent for its fixation to methanol was explored with din-butyldimethoxystannane in order to get insight into the reaction mechanism for activity improvement. Catalytic runs including recycling experiments allowed isolation and characterization by NMR, IR, and single-crystal X-ray diffraction of a new tin complex containing 10 tin atoms. This compound could be prepared independently and is considered as a resting species. The yield of DMC is highest under 20 MPa pressure that fits with a monophasic supercritical medium in agreement with fluid phase equilibria calculations. In line, preliminary kinetics and…